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SECTION 1

INTRODUCTION

1.1 BACKGROUND

In order to establish the viability of postbuckled structural
design applications in future aerospace vehicles, an assessment of the current
technology was conducted. The results of this technology assessment were
utilized in identifying additional developments necessary prior to efficient
application of the design concept. An extensive review of the available static
and fatigue analysis methods for postbuckled structures is documented in Refer-
ence 1. The specific objective of this effort was to critically review the
available data base on postbuckled composite and metal structural designs,
and determine its adequacy in characterizing the durability and damage toler-

ance of these structures.
1.2 SCOPE

Durability assessment of postbuckled structures was conducted by
reviewing the results of several preliminary design studies and test programs
where fatigue tests were conducted under shear, compression or combined load-
ing. In particular, the data were used to establish the influence of reversed
loading, environment, spectrum fatigue and stiffener attachment methods on
the endurance limit of flat and curved panels. Metal panel fatigue data were
found to be sparse and those available were used to identify fatigue failure

modes and define a stress-life diagram for metal postbuckled structures.

In evaluating the damage tolerance of composite panels, test data
were used to establish the influence of impact, disbonds at the stiffener/web
interface, and fastener holes on the static and fatigue response of post-
buckled panels. In addition, the feasibility and integrity of conventional

repairs for composite and metal panels is also demonstrated.

This technology assessment was utilized to identify gaps in the

durability and damage tolerance analysis methodology anu test data that need

o
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to be filled in the present program.

An extensive data base was reviewed for this assessment. The
data presented in this report are a condensed version of the total data
assessed and are used to illustrate the durability and damage tolerance
characteristics of postbuckled composite and metal structures. A majority of
the test data assessed were developed for AS/3501-6 and T300/5208 material
systems. However, the results can be considered to be generally applicable
to all 350°F cure epoxy systems. Section 2 details the durability character-
istics of postbuckled composite and metal panels. In Section 3 the damage
tolerance of composite panels is evaluated using available data. Finally,
in Section 4, recommendations for future work that should be performed in
this program are made on the basis of the data gaps identified from the tech-

nology assessment.

¥
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SECTION 2

DURABILITY OF POSTBUCKLED STRUCTURES

The fatigue test data generated in some of the preliminary design
and test studies cited in Reference 1 provide a good insight into the dura-
bility characteristics of composite and metal postbuckled designs. In addi-
tion, these data illustrate problem areas where additional testing is essen-
tial. A summary of these data and their significance are discussed in the

following paragraphs.

2.1 COMPOSITE PANELS

The available fatigue test data for composite panels under com-
pression, shear or combined loads indicate that these panels are, in general,
extremely durable. The fatigue response of flat stiffened composite shear
panels is summarized in Figure 2.1. These data were obtained from tests on
two different specimen designs (References 2 through 6) and include results
for fully reversed constant amplitude shear loading (R = -1) as well as spec-
trum fatigue loading. In Figure 2.1 it can be seen that the spectrum fatigue
life is considerably longer than the constant amplitude fatigue life; this
illustrates the relatively high severity of constant amplitude loading. Panel
fatigue failures in all tests represented in Figure 2.1, excluding the run-
outs, occurred by separation of the stiffeners from the skin. The test data
from Reference 5 appear to be the lower bound for the fatigue data. 1In
addition, for these latter tests the R-ratio was 0.1 as opposed to the fully
reversed shear loading applied in the case of Reference 3 panels. The lower
fatigue lives obtained in Reference 5 tests, therefore, are inconsistent with
the R~ratio effect observed in buckling resistant composite panels. However,
the relatively steep S-N curve for the Reference 5 test data was found to be
a characteristic of the stiffener/skin attachment design used for these panels.
In these panels, the stiffeners were cocured with the skin and no ply drop-
offs were included to ensure a smooth transition from the stiffener flange

to the skin.
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Figure 2.1. Composite Shear Panel Fatigue Response
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This influence of the stiffener-skin attachment design on the
fatigue response was verified by tests in Reference 6 where several alternate
attachment concepts were evaluated for static strength. The test data from
this study are summarized in Figure 2.2 which shows the various designs in-
vestigated as well as the static test results. From among these alternate
designs, the tailored flange and the stitched untapered flange (baseline
design of Reference 5 with stitching) designs were incorporated in flat shear
panels that were tested in fatigue. Both design concepts resulted in higher
fatigue life as indicated in Figure 2,1 by the data point corresponding to
"improved design." Thus, the stiffener skin attachment design change results

in a fatigue response consistent with that measured in References 3 and 4.

From the pooled flat shear panel fatigue data shown in Figure 2.1,
it is evident that the fatigue endurance limit is at least the design limit
load. In all these designs, the panels were prevented from buckling during
the level flight condition of a typical V/STOL aircraft. The requirement of
minimum skin gage resulted in panel failure loads being much greater than
the required ultimate load, a condition which is typical in most aircraft

applications.

The constant amplitude fatigue behavior of curved composite shear
panels was investigated in Reference 1. These data are shown plotted as a
function of the maximum fatigue load normalized by the static strength in
Figure 2.3. The curved panel failures under fatigue loading occurred by
stiffener/web separation. The endurance limit for these panels is approxi-
mately 55 percent of the static strength and is considerably in excess of
the design limit load.

The fatigue response of composite compression panels is summarized
in Figure 2.4. These data were obtained from tests conducted in References 1,
7, and 8 on flat and curved hat stiffened AS/3501-6 graphite/epoxy panels.
The R-ratios in the fatigue tests ranged from 6 through 10. The dominant
failure mode in these fatigue tests was initiation and propagation of a dis-
bond at the skin and stiffener interface. The data indicate that an extremely
long fatigue 1ife can be expected for design limit strain levels of 2,500
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pin/in. A majority of the postbuckled panels in aircraft applicatiomns is
stiffness-critical and not strength-critical. The current design practice
does not permit the average compressive limit strain in such applications

to exceed 3,000 pin/in. Thus, postbuckled composite compression panels are
inherently durable at the operating strain levels expected for such applica-

tions.

The fatigue behavior of flat composite panels under combined
compression and shear loading was investigated in Reference 9. The panels
were hat stiffened, made of AS/3501-6 graphite/epoxy. The design represented
a fighter aircraft fuselage side panel. The spectrum fatigue test data for
these panels are shown in Figure 2.5. The panels were tested for two life-
times of spectrum fatigue with the maximum load set at 71.6 percent of the
static failure load but showed no strength degradation. Constant amplitude
fatigue data for flat and curved panels under combined load were obtained in
Reference 10, an ongoing study. No fatigue failures were observed and there

was no evidence of significant residual strength degradation.

In summary, the durability of flat and curved composite panels
under compression, shear and combined loading is clearly demonstrated by the
test data available. Thus, fatigue testing of composite panels should be
minimized and should be performed only on an as needed basis to validate a

specific design requirement .

The influence of environment on static and fatigue behavior of
composite panels has been studied in Reference 10. A preliminary analysis
of the data in Reference 10 shows that hot/wet environment reduces the initial
buckling and failure load in compression by approximately 15 percent. However,
the residual strength after constant amplitude fatigue is unaffected. Thus,

the influence of environment on the durability of composite panels 1is not

significant.

-
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2.2 METAL PANELS

The durability of metal postbuckled panels is not as well estab-
lished. The primary reason for this has been the lack of a comprehensive
metal panel fatigue data base. However, the limited data available in the
literature and those generated in a recent study (Reference 1) illustrate
the fatigue failure modes expected in postbuckled metal panels and the

sensitivity of such panels to fatigue crack initiation and propagation.

Fatigue data from a set of early tests on flat metal shear panels
(Reference 11) are illustrated in Figure 2.6. These stiffened panels were of
a multi-bay configuration as shown in Figure 2.7 and were made of 7075-T6
aluminum alloy. The Z-section stringers and the T-section frames were
attached to the web at chem-milled lands. The fatigue tests were performed
at an R-ratio of -1. The panels were tested as an eccentrically loaded
cantilever beam. In all tests the fatigue crack initiated at a carmer of
the panel, at the edge of a chem-milled land, and then progressed along the
chem-mill line, indicating the effect of the stress concentration at the
edge of a chem-milled land. 1In Figure 2.6 the fatiguec lives are plotted as
a function of the calculated approximate values of the diagonal tensile
stress in the web at the maximum cyclic load. The effect of stress concen-

tration at the land edge is not included in the stress calculation.

Test data for curved metal shear panels were obtained in Ref -
erence 1 and are shown in Figure 2.8 along with the data from Reference 1ll.
The 7075-T6 aluminum metal panel configuration and the fatigue failure mode
are shown in Figure 2.9. During the fatigue tests on the curved metal panels,
cracks were first observed in the skin near the frame attachment fastener holes
and near the stringer attachment fastener holes. The cracks adjacent to the
stringers were parallel to the stringers and stopped growing shortly after
initiation whereas the cracks at the frame fasteners were transverse to the
diagonal tension direction and propagated as such across the entire panel.
The shear panel fatigue data in Figure 2.8 show that metal panels are sensi-
tive to fatigue and that the operating stress levels for these panels should

be at most 40 percent of their static strength to avoid fatigue failures.

11
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Compression fatigue test data for flat stiffened panels loaded in
the postbuckling range have been obtained in References 12, 13, and 14. 1In
these panels fatigue cracks occurred in the stiffeners at stiffener attachment
fastener holes and propagated along the loading direction as shown in
Figure 2.10. The fatigue failure mode, however, is unique to this design.
Crack initjiation in the skins at these fasteners holes is also possible

depending on the local stresses in the skin and in the stiffener.

Compression fatigue tests on curved metal panels were conducted
in Reference 1. The fatigue data for these panels are shown in
Figure 2.11. For comparison, fatigue data for composite panels de-
signed to the same loads are also shown. The curves have been faired to
show the data trend. The tests were conducted under constant amplitude
loading and at an R-ratio of 10. The test data are insufficient to select
a definitive value for the operating stress levels below which fatigue
failures would be unlikely. In these tests, two panels fatigue tested at
load amplitudes equal to 66 percent and 55 percent of the average ultimate
static strength, developed sizeable skin cracks after only 16,000 and 43,000
cycles of constant amplitude loading, respectively. The cracks were 2.5 inches
in length and were located parallel to the stiffeners and along the stiffener
edge, away from the fastenmers. Such failures have not been previously docu-
mented in the literature. A photograph illustrating the fatigue crack pattern

in curved metal compression panels is shown in Figure 2.12.

Fatigue data for flat or curved metal panels designed to operate
in the postbuckling range under combined loads are not available and need to
be generated to identify the fatigue failure modes and the operating stress
levels for design. In view of the data for compression and shear panels,
fatigue considerations are expected to be design drivers for postbuckled

metal panels.

2.3 FATIGUE L1FE PREDICTION METHODOLOCY

A review of the available analysis methods for postbuckled struc-

tures (Reference 1) showed that a life prediction methodology for composite

16
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or metal panels is, at present, not available. This is primarily due to

the lack of suitable test data. In Reference 1, based on the observed

fatigue failure modes in composite and metal compression and shear panels,

two approaches to predicting fatigue life of postbuckled structures have

been proposed. The two distinct approaches are essential due to the dif-
ferences in the failure modes of metal and composite panels. However, prior

to application of these methods, several analysis developments are required.

In particular, for metal panels under combined loads a methodology to predict
the local stresses and stress intensity factors is essential. For composite
panels, an analysis to predict the strain energy release rate at the stiffener/

web interface, and critical strain energy release rate data are required.

20
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SECTION 3

DAMAGE TOLERANCE OF POSTBUCKLED STRUCTURES

The influence of manufacturing defects and in-service damage on
the static strength and fatigue response of postbuckled composite panels
has been experimentally investigated in several studies. A majority of
these studies was conducted prior to the development of the MIL-PRIME draft
damage tolerance requirements (Reference 15). Thus, the defect/damage sizes
interrogated in these tests do not exactly match the MIL-PRIME specifications.
However, the defect/damage severity is comparable to the MIL-PRIME stipu-
lations. A damage tolerance assessment of the available test data indicates
that at the severity levels investigated, composite postbuckled panels are
highly tolerant to manufacturing defects and in-service damage at strain

levels typical of current designs.

In contrast to the sizeable damage tolerance data base for
composite panels, postbuckled metal panel design compliance with MIL-A-83444
has not been investigated. This is primarily due to the lack of a fatigue
analysis methodology for postbuckled metal panels and substantiating test

data.

The postbuckled composite panel test data are presented and dis-

cussed in the following subsections.
3.1 SHEAR PANELS

The influence of a skin stiffener disbond was studied in
Reference 16 for postbuckled shear panels where a disbond was simulated by
a teflon embedment. Several panels were tested with these embedded disbonds
at the skin/stringer interface. A majority of the panels with disbonds
demonstrated no significant growth of the disbond nor a loss in strength or
fatigue life. 1In the isclated worst case shown in Figure 3.1, growth of
the disbond from 2.0 inches to 4.0 inches did occur after 100,000 cycles
accompanied by a strength loss of about 16 percent. However, the test con-

ditions were far more severe than would be encountered in actual design
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practice.

The effect of clearly visible impact damage on postbuckling
strength of composite shear panels is summarized in Figures 3.2 and 3.3.
These data are taken from References 3 through 6. The data in Figure 3.2
show that impact damage of the severity evaluated had no significant effect
on the initial global buckling or the ultimate failure loads. The fatigue
data shown by solid symbols in Figure 3.3 illustrate that the fatigue life
of clearly visible midbay impact damaged panels is not significantly affected
by the impact. These data were obtained from References 3 and 5. From the
unshaded symbol data, if the design details were not known, it would appear
that impact damage does significantly reduce fatigue life. However, the
data point (Figure 3.3) shown by the uanshaded diamond, was obtained from
tests on a panel with an extremely high level of porosity at the stiffener/
web interface and is not representative of typical composite panels.
Secondly, the blade/flange impact data (Figure 3.3) shown by unshaded squares,
show a significant amount of scatter which may be due to fabrication vari-
ability at the skin stiffener interface. Considering these aspects of the
various tests the data trend shown by the solid line appears to be the most
probable. On the basis of the data trend, therefore, it appears that the
fatigue endurance limit for postbuckled composite shear panels is at least
the design limit load. Additional data are required, however, before this

conclusion can be confirmed.

3.2 COMPRESSION PANELS

The damage tolerance of composite compression panels loaded

beyond their initial buckling load is presented in Figures 3.4 through 3.7.
These data were taken from References 7 and 17. 1In Figure 3.4, the results
of studies on panels impacted at different locations while loaded in com-
pression are presented. It can be seen from this figure that the failure
strain of panels with impact damage is at least 2,500 pinches/inch under all
conditions. More important is the fact that for panels with any significant
postbuckling strength the failure strain increases. This aspect of the data

is more clearly {llustrated in Figure 3.5 where the post-impact compression
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ultimate strain is seen to increase as the postbuckling ratio increases.

The influence of fastener holes on postbuckled composite compression
panels is shown in Figures 3.6 and 3.7. These data were taken from Ref-
erence 17. From Figure 3.6 it is evident that for holes as large as one-third
the bay width, the ultimate strain in compression is no less than 4,000 hin/in.
This minimum value of the failure strain is considerably higher than typical
design values of around 2,500 pin/ia. Tn addition, it should be noted from
Figure 3.7 that the influence of fastener holes diminishes as the postbuckling

ratio increases.

3.3 COMBINED COMPRESSION AND SHEAR LOADING

Damage tolerance test data for composite panels under combined
loading are extremely limited. Test data to determine the influence of poros-
ity on flat postbuckled panels under combined loading were obtained in
Reference 9. The effect of severe porosity (4 percent by chemical analysis)
on these hat stiffened AS/3501-6 panels loaded in combined compression and
shear was shown to be insignificant. This fact is illustrated by the

data shown in Figure 3.8.

Additional data are required to determine the influence of impact
damage on the static strength and fatigue life of flat and curved panels

nnder combined loads.

The available data on compression and shear panels, however,
indicate that postbuckled composite panels can sustain relatively severe
damage without functional impairment. The additional tests recommended

should be performed only to confirm the trends indicated by the data.

3.4 REPAIRS

The feasibility and adequacy of conventijonal repairs (Reference 18)
for composite panels have been investigated in References 7 and 19. 1In
Reference 7, AS/3501-6 compression panels with mid-bay impact damage were
repaired using a flush patch and statically tested. A photograph of the

repaired compression panel is shown in Figure 3.9 The repaired panel static
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test data showed no significant strength reduction as compared to the un-
damaged panels. The failure was away from the repair area in one of the end
stiffeners as shown in Figure 3.9. The only difference in panel behavior
was that the end bay webs exhibited significant buckling similar to undamaged
panels, but the out-of-plane web displacements for the repaired bay were not

as prominent as in the undamaged panels.

Repairs of stiffeners and stiffener/skin disbonds in shear panels
were performed in Reference 19 where a previously static tested and failed
flat shear panel was repaired and re-tested. Panel failure in the initial
test was by complete separation of the stiffener {rom the skin accompanied
by extensive skin surface delamination. The repairs were performed by
applying a scarfed patch to the delaminated skins and by adhesively bonding
the stiffeners. A photograph of the repaired shear panel is shown in
Figure 3.10. Static test of the repaired panel showed no loss in strength

thus demonstrating the integrity of the repair.
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Figure 3.9.

Failure Mode of Repaired Compression

Figure 3.10.

Shear lanel After Revair (Reference 19)
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SECTION 4

RECOMMENDED FUTURE WORK

4.1 SUMMARY

The excellent durability and damage tolerance of composite panels
under shear or compression loading and their damage tolerance under combined
loading is substantiated by the existing data base. However, the durability
of composite panels designed to operate under combined loads needs to be
confirmed. The available data also show that the durability of metal panels
designed using available analyses appears to be in question. Additicnal data
on the fatigue life of metal panels under combined loading are required.
These data will be useful in identifying fatigue failure modes for metal
panels under combined loads. Analysis techniques to verify metal postbuckled
panel damage tolerance and compliance with MI1.-A-83444 also need to be de-

veloped.

Available data indicate that the repair techniques for buckling
resistant structures can be used to repair postbuckled composite panels and

l restorc panel strength to almost 100 percent of its undamaged strength.
4.2 DATA GAPS

As a result of this technology assessment, specific data and
analysis requirements that must be addressed to make postbuckling viable for

+ future aerospace vehicles have been identified and are summarized in Table 4.1.

1 The most significant data gap is in the area of metal panel fatigue under

combined loading. Test data need to be generated for curved metal panel

designs representative of actual aircraft fuselage structures. Using the

results of these tests a life prediction methodology for postbuckled metal

panels needs to be developed.

For composite panels under combined loading, a limited number of
fatigue tests have to be conducted to confirm the durabiility characteristics
observed in the case of panels under compression or shear loads. The fatigue

load levels in these tests must be severe enough to force failures so that

ﬁ %
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the failure modes can be identified. Since stiffener/web separation is the
expected fallure mode in the fatigue tests on composite panels, an analysis
methodology to predict the propagation of an initial flaw at the interface

is required. The specific approach that can be used for this purpose consists
of analytically computing the strain energy release rate at the initial flaw
tip due to the applied loading and using it in conjunction with a non-linear

law and the material properties to predict growth of the disbond.

To complement the existing data base on the damage tolerance of
composite panels a limited number of static tests on impact damaged panels
need to be conducted. The impact damage in these tests should be intro-
duced at the most critical location which is expected to be over a stiffener

flange bonded to the skin.

36




10.

REFERENCES

Deo, R. B., Agarwal, B. L., and Madenci, E., "Design Methodology
and Life Analysis of Postbuckled Metal and Composite Panels,"”
Final Report on Contract F33615-81-C-3208, May 1985.

Agarwal, B. L., "Postbuckling Behavior of Composite Shear Webs,"

a paper presented at the Twentieth AIAA/ASME/SAE, Structures,
Structural Dynamics, and Materials Conference, Seattle, Washington,
May 1980.

Agarwal, B. L., "Flat Stiffened Graphite/Epoxy Tension Field
Panels Under Constant-Amplitude Fully-Reversed Fatigue Loading,"
Report No. NADC-81169-60, Final Report on NADC Contract N62269-
79-C-0461, August 1981.

Agarwal, B. L. and Van Etten, C. D., "Effect of Spectrum Loading
on Postbuckling Fatigue of Advanced Composite Flat Shear Panels,"
Report No. NADC-80117-60, Final Report on NADC Contract N62269-
81-C-0321, December 1981.

Renieri, M. P. and Garrett, R. A., "Postbuckling Fatigue Behavior
of Flat Stiffened Graphite/Lpoxy Panels Under Shear Loading,"
NADC Report No. NADC-78137-60, Final Report for Contract N62269-
79-C-0463, August 1980.

Renieri, M. P. and Garrett, R. A., "Stiffener/Skin Interface Design
Improvements for Postbuckled Composite Shear Panels,"” Final Report,
NADC 80134-60, April 1982.

Agarwal, B. L., "Postbuckling Behavior of Hat-Stiffened Flat and
Curved Composite Compression Panels,"” Report No. NOR 81-187,
Final Report on Navy Contract N00019-79-C-0549, October 1981.

Hinkle, T. V.; Sorenson, J. P. and Garrett, R. A., "Compression
Postbuckling Behavior of Stiffened Curved Graphite/Epoxy Panels,"”
a paper presented at the Fifth DOD/NASA Conference on Fibrous
Composites in Structural Design, held in New Orleans, Louisiana,
January 1981.

Eves, J. J., et al, "Composite Wing/Fuselage Program," study
being conducted at Northrop under Air Force Contract F33615-79-C-
3203.

Garrett, R. A., "Postbuckling of Flat and Curved Stiffened Composite

Panels Under Combined loads," a study in progress under Navy
Contract N62269-81-C-0384.

37




PRSI /- sigpasrnuiictbnssgingrp e SR P PO —

11.

12.

13.

14.

15.

16.

17.

18.

19.

REFERENCES (Concluded)

Tsongas, A. G. and Ratay, R. T., "Investigation of Diagonal
Tension Beams With Very Stiffened Webs," NASA CR 101854,
July 1969.

Salvetti, A. et al, "Theoretical and Fxperimental Research on

the Fatigue Behavior of Cracked Stiffened Panels," U.S. Army
Contract DAJA 37-72-C-1783, European Research Office, AD 769 948,
February 1973.

Salvetti, A and Casarosa, C., "Fatigue Behavior of Hat Section
Stringer Stiffened Panels Compressed in the Postbuckling Range,”
U.S. Army Contract DAJA 37-72-C-1280, European Research Office,
AD 773 672, .July 1973.

Salvetti, A. and Casarosa, C., "Fatigue Behavior of Hat Section
Stringer Stiffened Panels Compressed in the Postbuckling Range,"
U.S. Army Contract DAJA 37-71-C-1147, AD 748 855, March 1972.

McCarty, J., and Whitehead, R. S., '"Damage Tolerance of Composites
Program,' Boeing/AFWAL Contract F33615-82-C-3213, Interim Reports
1 through 5, February 1983 to February 1985.

Ostrom, R. B., "Postbuckling Fatigue Behavior of Flat, Stiffened
Graphite/Epoxy Panels Under Shear Loading," Report No. NADC-

78137-60, Final Report on Navy Contract N62269-79-C-0462, May 1981.

Starnes, J. H., Knight, N. J. and Rouse, M., '"Postbuckling
Behavior of Selected Flat Stiffened Graphite/Epoxy Panels Loaded
in Compression,' AIAA paper No. 82-0777.

Advanced Composite Repair Guide, Prepared for the Air Force by
Northrop Corpouration, F33615-79-C-3217, March 1982.

Bhatia, N. M., "Postbuckling Fatigue Behavior of Advamced Com-
posite Shear Panels," presented at the Army Symposium on Solid
Mechanics, 1976 - Composite Materials: The Influence of Failure
on Design, AMMRC MS 76-3, September 1976.

U.S.Government »rinting (Mtice: 1986 646-01//40880

38




DATE
FILMED

9-66

H




